Object Detection Cam 4+

Heng Jia Liang

Conçu pour iPad

    • 2,99 €

Captures d’écran

Description

Object Detection Cam enables you to detect objects with your iPhone or iPad with custom train machine learning model. Build in include YOLOv3Tiny.mlmodel as default object detection model, A neural network for fast object detection that detects 80 different classes of objects.

Object Detection Cam Features:
• Load and run custom machine learning model from library.
• Able to Rename/Delete machine learning model from the library.
• Photo capture are saved in the photo library for fast and easy access.
• Able to set Sound when an object is detected.
• Able to select difference sound tone for object detection.
• Show machine learning model classes.

You can download pretrain machine learning model with extension .mlmodel and put it into Object Detection Cam Folder in Files App by Airdrop.
Or You can train a machine learning model for Object Detection with tool such as CreateML or Tensorflow [need conversion into .mlmodel]

Custom Train Model Tips:
For example, you have a trained model which detects 5 dog breeds such as Husky, Bulldog, Golden Retriever, German Shepherd and Beagle. You can use the model to detect these 5 breeds of dog with not much issue. However, if you try to detect dog breed such as Boxer it might give inaccurate results such as Bulldog. So the train model should include as much classes of objects as possible in that category.

Usage:
• Detect plant species in jungle with custom train model.
• Identify dog breeds with custom train model.
• Identify animal species with custom train model.
• Identify insect species with custom train model.
• Monitoring item status such as a defective item with custom train model.
• And many more depend on your imagination.

Quick Start Guide:
1. Airdrop and place pretrain machine learning model with extension .Ml model [e.g. DogBreedsModel.mlmodel] into [OD Cam] Folder in Files App.
2. Load Object Detection Cam.
3. Go to the Library and tap on pretrain machine learning model [e.g. DogBreedsModel.mlmodel].
4. The camera now can detect objects within the class label of the model.
5. If the dog is detected, box and the text will appear on screen with a specific class label.
6. You can snap the image and photo will be saved into camera roll.


To obtain relevant results, object detection algorithms often use machine learning or deep learning. When we look at photographs or videos, we may quickly distinguish and find objects of interest. The purpose of object detection is to use a computer to imitate this intelligence.

Object localization includes creating a bounding box around one or more objects in an image, whereas image classification involves providing a class label to an image.

[*] Make sure the train model are machine learning model that has been trained to Detect Objects in images. [Not Image Classifier Model or any Other Classifier Model]


Thanks for your support and do visit nitrio.com for more apps for your iOS devices.

Confidentialité de l’app

Le développeur Heng Jia Liang a indiqué que le traitement des données tel que décrit ci‑dessous pouvait figurer parmi les pratiques de l’app en matière de confidentialité. Pour en savoir plus, consultez la politique de confidentialité du développeur.

Données non collectées

Le développeur ne collecte aucune donnée avec cette app.

Les pratiques en matière de confidentialité peuvent varier, notamment en fonction des fonctionnalités que vous utilisez ou de votre âge. En savoir plus

Prend en charge

  • Partage familial

    Jusqu’à six membres de la famille peuvent utiliser cette app lorsque le partage familial est activé.

Du même développeur

Motion Detector Camera
Utilitaires
Dash Cam Plus
Utilitaires
Dual Camera Plus
Photo et vidéo
Latex Equation Editor
Utilitaires
Photo Art Painter
Photo et vidéo
Stop Motion Plus
Photo et vidéo

Vous aimerez peut-être aussi

AI Legend
Photo et vidéo
3D Gallery
Photo et vidéo
Visym Collector
Photo et vidéo
Clipping Camera
Photo et vidéo
Traducteur Vocal Multilingue
Photo et vidéo
Nitro Photo
Photo et vidéo