ReasonLines 4+

Wallace Murphree

Conçue pour iPad

    • 0,99 $

Captures d’écran

Description

ReasonLines provides (1) a new and easier approach to the traditional syllogism and (2) an expansion of the traditional syllogism to include numerical quantification.

1)The new approach to the traditional syllogism

Instead of considering isolated statements as the components of arguments, such as major premise, minor premise, and conclusion, this new approach bundles each statement with its equivalents and each bundle is represented by its own “schematic” of arrows. The premise schematics can then be dropped in place along side each other where their juxtaposition displays whatever conclusion, if any, is entailed. The user only needs to learn how to select the correct premise schematics and how to follow the arrows for a conclusion.

  Part One of the Help page is a tutorial for this new approach.

(2)The numerical expansion of the traditional syllogism

It is already standard to interpret the particular quantifier numerically; that is, it is standard to take “some” as “at least one.” Moreover, the universal quantifiers, “all” and “no,” can also be faithfully rendered numerically since “all” means “all with zero exception” and “no” means none “none with zero exception.” Given this, it turns out that the traditional quantifiers simply mark the beginnings of endless possible quantifications since “at least one” opens the series of “at least two,” “at least three,” etc., and “all (none) but zero” opens “all (none) but one,” “all (none) but two,” etc.

By making this explicit, the zero and one of traditional syllogisms become replaceable by other numbers. So, for example, “All but 10 A are B and all but 20 B are C, so All but 30 A are C,” and “At least 100 A are B, All but 7 B are C, so At least 93 A are C,” are just as valid as the traditional Barbara and Darii, and for the very same reason.

  Part Two of the Help page develops this numerical expansion by appealing to the schematics.

Nouveautés

Version 1.3

Minor updates and bug fixes.

Confidentialité de l’app

Le développeur Wallace Murphree a indiqué que les pratiques de l’app en matière de confidentialité peuvent comprendre le traitement des données comme décrit ci‑dessous. Pour en savoir plus, consultez la politique de confidentialité du développeur.

Données non recueillies

Le développeur ne recueille aucune donnée avec cette app.

Les pratiques en matière de confidentialité peuvent varier selon les fonctionnalités que vous utilisez ou selon votre âge. En savoir plus

Prend en charge

  • Partage familial

    Jusqu’à six membres de la famille peuvent utiliser cette app lorsque la fonctionnalité Partage familial est activée.

Vous aimerez peut-être aussi

Algebra Concepts for iPad
Éducation
ArguMap Pro - Map Arguments
Éducation
Binary Code Toolkit
Éducation
Algebra Balance
Éducation
AngularQM
Éducation
Kids Reading Comprehension 2
Éducation