Capacitor Calculator 4+

Nitrio

Progettata per iPad

    • 2,99 €

Screenshot

Descrizione

Capacitor Charge and Time Constant Calculator

The time constant is a measurement of the time needed to charge a capacitor by approximately 63.2% or discharge a capacitor by about 36.8% of the difference between the old value and the new value after an impulse that induces a change has been applied. The time constant also defines the response of the circuit to a step (or constant) voltage input. Consequently, the cutoff frequency of the circuit is defined by the time constant.

Time Constant = Voltage (V) x Capacitance (μF) x Load Resistance (Ω)

To calculate the energy (E) and time constant (RC) in a capacitor for the given voltage across it, we need two different values from the calculator:
- Energy stored on a capacitor (E) can be determined by providing all three inputs: voltage (V), capacitance (C), and load resistance (R).
- Time constant (T) can be determined from the values of capacitance (C) and load resistance (R).

All electrical or electronic circuits or systems suffer from some form of “time-delay” between their input and output when a signal or voltage, either continuous (DC) or alternating (AC), is firstly applied to it.

This delay is generally known as the time delay or time constant of the circuit, and it is the time response of the circuit when a step voltage or signal is firstly applied. The resultant time constant of any electronic circuit or system will mainly depend upon the reactive components, either capacitive or inductive, connected to it and is a measurement of the response time with units of Tau – τ.

When an increasing DC voltage is applied to a discharged capacitor, the capacitor draws a charging current and "charges up." When the voltage is reduced, the capacitor discharges in the opposite direction. Because capacitors are able to store electrical energy, they act like small batteries and can store or release the energy as required.

The charge on the plates of the capacitor is given as: Q = CV. This charging (storage) and discharging (release) of a capacitor's energy are never instant but take a certain amount of time to occur, with the time taken for the capacitor to charge or discharge to within a certain percentage of its maximum supply value being known as its time constant (τ).

Thanks for your support, and do visit nitrio.com for more apps for your iOS devices.

Novità

Versione 1.2

- Updated for the newest devices.
- Minor UI update.
- Minor bugs fixed.

Privacy dell’app

Lo sviluppatore, Nitrio, ha indicato che le procedure per la tutela della privacy dell’app potrebbero includere il trattamento dei dati descritto di seguito. Per ulteriori informazioni, consulta l’informativa sulla privacy dello sviluppatore.

Dati non raccolti

Lo sviluppatore non raccoglie alcun dato da quest’app.

Le procedure per la tutela della privacy possono variare, per esempio, in base alle funzioni che usi o alla tua età. Ulteriori informazioni

Supporto

  • In famiglia

    Se “In famiglia” è stato attivato, fino a sei membri della famiglia potranno usare l’app.

Altre app di questo sviluppatore

Wallpapers Collection Anime Edition
Stili e tendenze
Wallpaper Collection Supercars Edition
Intrattenimento
Wallpapers Collection Sport Edition
Intrattenimento
Live Wallpaper Collezioni
Intrattenimento
Wallpaper Collection Classiccars Edition
Intrattenimento
Wallpaper Collection Animals Edition
Intrattenimento

Ti potrebbe piacere

RC Circuit Pro
Utility
Link Bucket - Save Links Easy
Utility
Electronic Circuits Calc Pro
Utility
Decimal
Utility
Calcolatori di impedenza
Utility
Elettriche Convertitore
Utility