ReasonLines 4+

Wallace Murphree

iPad için tasarlandı

    • ₺39,99

Ekran Görüntüleri

Açıklama

ReasonLines provides (1) a new and easier approach to the traditional syllogism and (2) an expansion of the traditional syllogism to include numerical quantification.

1)The new approach to the traditional syllogism

Instead of considering isolated statements as the components of arguments, such as major premise, minor premise, and conclusion, this new approach bundles each statement with its equivalents and each bundle is represented by its own “schematic” of arrows. The premise schematics can then be dropped in place along side each other where their juxtaposition displays whatever conclusion, if any, is entailed. The user only needs to learn how to select the correct premise schematics and how to follow the arrows for a conclusion.

  Part One of the Help page is a tutorial for this new approach.

(2)The numerical expansion of the traditional syllogism

It is already standard to interpret the particular quantifier numerically; that is, it is standard to take “some” as “at least one.” Moreover, the universal quantifiers, “all” and “no,” can also be faithfully rendered numerically since “all” means “all with zero exception” and “no” means none “none with zero exception.” Given this, it turns out that the traditional quantifiers simply mark the beginnings of endless possible quantifications since “at least one” opens the series of “at least two,” “at least three,” etc., and “all (none) but zero” opens “all (none) but one,” “all (none) but two,” etc.

By making this explicit, the zero and one of traditional syllogisms become replaceable by other numbers. So, for example, “All but 10 A are B and all but 20 B are C, so All but 30 A are C,” and “At least 100 A are B, All but 7 B are C, so At least 93 A are C,” are just as valid as the traditional Barbara and Darii, and for the very same reason.

  Part Two of the Help page develops this numerical expansion by appealing to the schematics.

Yenilikler

Sürüm 1.3

Minor updates and bug fixes.

Uygulama Gizliliği

Wallace Murphree adlı geliştirici, uygulamanın gizlilik politikasına göre verilerin aşağıda açıklandığı gibi işlenebileceğini bildirdi. Daha fazla bilgi için geliştiricinin gizlilik politikası bölümüne bakın.

Veriler Toplanmaz

Geliştirici, bu uygulamadan herhangi bir veri toplamaz.

Gizlilik uygulamaları, kullandığınız özellikler veya yaşınız gibi faktörlere göre değişiklik gösterebilir. Ayrıntılı Bilgi

Destekledikleri

  • Aile Paylaşımı

    Aile Paylaşımı etkinken en fazla altı aile üyesi bu uygulamayı kullanabilir.

Diğer Beğenebilecekleriniz

Algebra Concepts for iPad
Eğitim
Algebra Balance
Eğitim
Binary Code Toolkit
Eğitim
GeneticAlgorithms
Eğitim
ArguMap Pro - Map Arguments
Eğitim
Algebra without Fear
Eğitim