Ai Academy : Deep Learning

Educación

9,99 € · Diseñada para iPad

80 Days of AI Mastery: Learn Deep Learning Day by Day: Master artificial intelligence and machine learning at your own pace with Day-by-Day Deep Learning—a dynamic and interactive learning app designed to simplify complex topics like neural networks, CNNs, RNNs, Transformers, and more. Whether you’re just starting your AI journey or advancing your deep learning expertise, this app offers everything you need to learn effectively. Key Features: • Interactive Flashcards: Learn with bite-sized flashcards designed for clarity and retention, and mark your progress as you go. • Personalized Notes for Each Topic: Add and save your own notes directly within each topic, making it easy to personalize your learning journey. • Bookmark and Track Progress: Bookmark key topics for quick reference and monitor your overall progress with a detailed dashboard that keeps you motivated. • Mark as Read: Stay organized by marking lessons as read and tracking what’s left to explore. • Offline Access: Learn anytime, anywhere, without needing an internet connection. • Powerful Search Functionality: Quickly find topics or lessons using the robust search tool. • Beginner to Advanced Topics: Cover foundational concepts like supervised learning and neural networks, then dive into advanced topics like NLP, Transformers, and Reinforcement Learning. • Math & Code Support: View beautifully rendered equations and syntax-highlighted code examples for a seamless and professional learning experience. Take your deep learning skills to the next level. Whether you’re learning for work, school, or personal growth, Day-by-Day Deep Learning gives you the tools to succeed. Download now and start your journey to becoming an AI expert today!

  • Esta app no ha recibido suficientes valoraciones o reseñas como para mostrar una visión general.

Fixed the material of the content, the material are more up to date for 2025 and all information got better and more up to date :  Now is 80 articles fixed and updated for 2025 to learn ai - deep learning step by step in 80 days : topics covered are : 80 days topics include in this app are : Intro to ML – ML types, models, train-test split. ML in iOS – Using ML in apps. Model Types – Supervised vs. unsupervised. Regression & Classification – Basics with MNIST. SGD Math – How it works. Normal Equation – Prediction without iteration. Gradient Descent – Concept and application. Types of GD – Batch, Stochastic, Mini-Batch. Perceptrons – Deep learning basics. MLPs – Regression vs. classification. Activation Functions – ReLU, Sigmoid, etc. Non-Linearity – Hidden layers & activation. Intro to Keras – Building models. Keras APIs – Sequential, Functional, Subclassing. Keras API Comparison – Sequential vs. Functional. TensorFlow Tools – TensorBoard, callbacks, saving models. Hyperparameter Tuning – With Keras Tuner. Manual vs. Auto Optimization – Tuning models. Bayesian Optimization – Neural network tuning. Vanishing Gradient – Explanation. Weight Initialization – Strategies. Monetizing AI APIs – Creating paid APIs. Weight Init: Part 2 – Advanced methods. Advanced Activation – GELU, Mish, etc. Batch Norm – How it works. Batch Norm: Part 2 – Further details. Batch Norm Parameters – Trainable/non-trainable. Gradient Clipping – Avoid exploding gradients. Transfer Learning – Basics. Transfer Learning Example – Implementing it. Labeled vs. Unlabeled Data – Differences. Speeding Up Training – Optimization tricks. Momentum Optimization – Deep dive. Momentum vs. Normalization – Comparisons. Momentum: Part 3 – Advanced details. NAG Optimizer – Nesterov Accelerated Gradient. AdaGrad – Origins & proof. Optimizer Comparison – AdaGrad, RMSProp, Adam. Adam vs. Other Optimizers – Pros & cons. Adam & Local Minima – Understanding behavior. More Optimizers – NAdam, AdaMax, AdamW. Learning Rate Schedules – Why they matter. 1Cycle Schedule – Explanation. Gradient Clipping & Weight Init – Combined effect. LR Scheduling Methods – 1-Cycle, CED, Exponential. TensorFlow vs. PyTorch vs. MLX – Frameworks compared. Regularization – Preventing overfitting. Dropout – Including MC Dropout. Max-Norm Regularization – Explanation. Deep vs. Dense Networks – Differences. Deep Learning Use Cases – Overview. ML in iOS Apps – Integration. CNNs – Basics & use cases. CNN Math – How it works. RNNs: Part 1 – Sequence modeling. RNNs: Part 2 – More details. RNNs & Time Series – Forecasting. RNN vs. Feedforward – Mathematical comparison. ARIMA & SARIMA – Before diving into RNNs. RNN Step-by-Step – Time series forecasting. Seq2Seq Forecasting – Iterative vs. direct. LSTMs & Layer Norm – RNN enhancements. RNNs for NLP – Language modeling. Why Transformers Win in NLP – Key insights. Transformers Overview – GPT to DeepSeek. Transformer Breakthroughs – ChatGPT to DeepSeek. BERT Explained – Key insights. How ChatGPT Works – Basics. ChatGPT vs. BERT – Understanding comparison. ChatGPT: Step-by-Step – Breakdown. NLP Mathematics – Behind modern AI models. Transformers in Vision & Multimodal AI – Expansion. Autoencoders, GANs, & Diffusion – Overview. Stacked Autoencoders – Unsupervised pretraining. Diffusion Models – Breaking them down. GANs – Deep learning for image generation. How DALL·E Works – Image synthesis. Reinforcement Learning – Applications & impact. DeepNet – Scaling Transformers to 1,000 layers. DeepSeek-R1 – Advancing LLM reasoning.

El desarrollador, INGOAMPT, ha indicado que las prácticas de privacidad de la app pueden incluir la gestión de datos descrita a continuación. Para obtener más información, consulta la política de privacidad del desarrollador .

  • No se recopilan datos

    El desarrollador no recopila ningún dato en esta app.

    Las prácticas de privacidad pueden variar, por ejemplo, dependiendo de tu edad o de las funciones que uses. Más información

    El desarrollador no ha indicado todavía las prestaciones de accesibilidad que son compatibles con la app. Más información

    • Tamaño
      • 24,8 MB
    • Categoría
      • Educación
    • Compatibilidad
      Requiere iOS 17 o posterior.
      • iPhone
        Requiere iOS 17 o posterior.
      • iPad
        Requiere iPadOS 17 o posterior.
      • Mac
        Requiere macOS 14.0 o posterior y un Mac con el chip M1 de Apple o posterior.
      • Apple Vision
        Requiere visionOS 1.0 o posterior.
    • Idiomas
      • Inglés
    • Edad
      4+
    • Proveedor
      DI Pegah Tafvizi
      • DI Pegah Tafvizi se ha identificado como comerciante de esta app y ha confirmado que este producto o servicio cumple la legislación de la Unión Europea.
      • Número DUNS
        300897687
      • Dirección
        Doblerhofstrasse 10, floor 29, door 348
        1030 Wien
        Austria
      • Número de teléfono
        +43 66565788987
      • Correo electrónico
        Ingoampt@yahoo.com
    • Derechos de autor
      • © INGOAMPT 2025