H-Module 17+
Marco Rozgic
iPad용으로 디자인됨
-
- 무료
스크린샷
설명
Disclaimer
The H-Module is a medical supporting tool used for educational purposes of the haematological acute radiation syndrome (H-ARS) only. Before making any medical decisions based on H-Module results, clinicians specialized in hemato-oncology and experienced in H-ARS should be consulted.
The Threat
During radiological (e.g. terrorist attack) or nuclear events (e.g. nuclear power plant accidents or use of an improvised nuclear device) subjects will be exposed to ionizing radiation. With a delay of days or weeks after radiation, injured patients will become very sick, requiring an early hospitalization and intensive care in order to survive.
The Aim
Physicians require rapid guidance for early and high-throughput diagnosis and therapeutic interventions of the H-ARS. Within the first three days after exposure and prior to the onset of the disease manifestation this App allows to:
(1) Identify the worried well (H0) to avoid misdirection of limited clinical resources,
(2) identify individuals, who will require hospitalization and if applicable intensive care (H2-4 H-ARS),
(3) Identify exposed individuals, who will develop a severe/lethal degree of the hematopoietic syndrome (H3-4 H-ARS).
Depending on the changes in blood cell counts, no precise allocation to a certain H-ARS severity category can be provided. In this case, a severity range will be shown and associated likelihoods of the prediction (given as positive and negative predictive values) calculated.
The Tool
We focused on groups of clinical significance and used logistic regression analysis to achieve a discrimination between these groups during the first three days after exposure:
1. H0 vs H1-4, identification of unexposed individuals (H0)
2 .H0-1 vs H2-4, identification of individuals requiring hospitalization (H2-4)
3 .H0-2 vs H3-4, identification of individuals who will develop a severe/lethal degree of the H-ARS (H3-4).
For each of these group comparisons we examined how well changes in lymphocytes, granulocytes and thrombocytes contributed to their discrimination and build corresponding mathematical models for each day.
For days 2 and 3 we examined which blood cell counts from that same day or which combination of blood cell counts from previous days (sequential diagnosis) might provide the best model for discriminating the three binary categories examined (table 1).
Depending on the day and the binary category one out of these 21 models will be activated by the App.
Diagnostic and therapeutic recommendations from these models are finally aggregated following an algorithm as stated elsewhere (Majewski et al. 2020). The likelihood (positive or negative predictive value) in favor of the higher or lower binary category are reflected in percent.
새로운 기능
버전 1.4.1
Renamed Sick Calculation and Web version to Single and Multiple Patient input
앱이 수집하는 개인정보
Marco Rozgic 개발자가 아래 설명된 데이터 처리 방식이 앱의 개인정보 처리방침에 포함되어 있을 수 있다고 표시했습니다. 자세한 내용은 개발자의 개인정보 처리방침을 참조하십시오.
데이터가 수집되지 않음
개발자가 이 앱에서 데이터를 수집하지 않습니다.
개인정보 처리방침은 사용하는 기능이나 사용자의 나이 등에 따라 달라질 수 있습니다. 더 알아보기
정보
- 제공자
- Marco Rozgic
- 크기
- 37.3MB
- 카테고리
- 의료
- 호환성
-
- iPhone
- iOS 16.0 이상 필요
- iPad
- iPadOS 16.0 이상 필요
- Mac
- macOS 13.0 이상 및 Apple M1 칩 이상이 탑재된 Mac이 필요
- Apple Vision
- visionOS 1.0 이상 필요
- 언어
- 연령 등급
- 17+ 상습적인/과격한 의료/치료 정보
- 저작권
- © 2021 BIR
- 가격
- 무료