SimplML

Utilidades

Sólo para Mac

Gratis

Mac

All-numeric supervised machine learning ("tabular regression," in Apple CoreML parlance) via basis function methods, with model slicer visualization tools. Now supporting binary classification problems. See What's New In This Version to learn about all the latest updates! This is a "no code" baseline app to serve as a test bed for basis function approximation methods, which are fairly simple (comparatively speaking) machine learning methods involving a single fully connected inner layer, and are usable for solving general smooth-ish function fits. There is no need to install a myriad of Python packages or other tools to use this. Simply download the app from the app store and read in your CSV file. The legendary automotive miles per gallon data set which pre-dates Tensorflow and many of its users originating from one of the infamous "malaise eras" is uploaded here in the proper CSV format for this system as a tutorial data set for learning the system: https://diffent.com/mpgfull.csv Original data source & background: https://www.tensorflow.org/tutorials/keras/regression More detailed use instructions at https://diffent.com/simpleml.pdf Features: two basis function types (gauss & multi-quadric) two distance metrics (Euclidean and Manhattan) adjustable shape parameter flexible on-screen data column selector constant or variable basis function widths some improper data flagging (question marks or non-numeric characters in data; however, scientific notation is supported e.g. 4.2e1 optional input variable normalization model complexity hyperparameter adjustments (manual) auto withhold of points for train/test split (user controllable amount via fraction of original points) actual versus predicted plots for train, test, and out of sample evaluation points actual versus predicted data exported to annotated columnar text files plots in portable HTML for easy use in other systems hyperparameters stored as user defaults Variable importance is estimated by leaving a variable out of an already solved model and comparing RMS error of training data set to full variable RMS error. If RMS doesn't change much, the variable was not very important. Results reported out as (RMSchange/RMS - 1) per variable in lower green output window. User can apply this information to remove variables from models that are less important, for improved out of sample performance.

  • Esta app no ha recibido suficientes calificaciones ni reseñas para mostrar un resumen.

Auto weight unbalanced binary output values in residual / sum of square error computation (for classification problems) based on the actual data imbalance ratio. For example, if you have 25 outputs at 1 and 75 outputs at 0 in a 100 point data set, the imbalance ratio is 3 to 1, so we weight the errors on the actual 1 values to be more important by a factor 3, so that the solver will focus on those better. This factor may be high, but we leave it there for now. Allow the "max down count" that can occur before stopping is triggered during a fwd stepwise solve to be 10 (was 2). Output the so-called precision of a binary outcome solve for the 1 target value during a stepwise solve. The following right hand side variables are integer counts. float mlPrecision = (float)correctBinary1/((float)(correctBinary1 + (actualBinary0 - correctBinary0))); Is this the only definition possible for "precision?" Doubtful. This is why we output the raw ratios (confusion matrix) for further analysis.

El desarrollador (differential enterprises) indicó que las prácticas de privacidad de la app pueden incluir el manejo de datos que se describe a continuación. Para obtener más detalles, consulta la política de privacidad del desarrollador .

  • No se recopilan datos

    El desarrollador no recopila ningún dato en esta app.

    Las prácticas de privacidad pueden cambiar; por ejemplo, según tu edad o las funciones que uses. Obtén detalles

    El desarrollador aún no ha indicado cuáles funciones de accesibilidad admite esta app. Obtén detalles

    • Vendedor
      • differential enterprises
    • Tamaño
      • 1.8 MB
    • Categoría
      • Utilidades
    • Compatibilidad
      Requiere macOS 12.0 o posterior.
      • Mac
        Requiere macOS 12.0 o posterior.
    • Idiomas
      • Inglés
    • Edad
      4+
    • Copyright
      • © 2023 diffent.com