CD4 Hunter

Education

Free

Search. Attach. Invade. Multiply. Repeat. That’s your goal as an HIV virion, a CD4 Hunter™. How many target cells can you infect before you run out of time? Stay tuned for more games about other microbes that threaten our health. Follow us on Twitter: @Drexel_IMMID, #IMMID, #CD4Hunter Visit our website: www.drexelmed.edu/immid Game Features: CD4 Hunter is a fast-paced, educational mini-game in which players take on the role of a human immunodeficiency virus type 1 (HIV-1) virion. By immersing real science within simple game play, users learn about the first step of HIV-1’s fascinating and complex replication cycle: binding and attachment. CD4 Hunter invites players to enter the bloodstream and grow their viral population by infecting specific target cells, while evading the immune system. Download CD4 Hunter for free to: • Learn complex science through fast-paced and addictive game play; • Hunt for target cells in the human bloodstream; • Control and grow your viral population; and • Face antibody attacks as the immune system fights infection. Learning Goals: CD4 Hunter is the first in a series of mini-games to be developed by the Institute for Molecular Medicine and Infectious Disease at Drexel University College of Medicine, to introduce players to the dynamic world of infectious disease. CD4 Hunter was designed to supplement learning about the multi-stage process of the HIV-1 replication cycle, through interactive gameplay. This app is intended for use in biomedical science curriculum in higher education. Users apply knowledge about the biological processes involved during HIV-1 replication to advance in the game. CD4 Hunter focuses on meeting the following learning objectives: 1. Identify gp120 as a basic element of HIV-1 structure and apply knowledge about its function in the process of viral binding and entry. 2. Identify CD4+ T cells as targets for HIV-1 infection in humans and apply knowledge about their role in viral pathogenesis. 3. Identify and match the molecules on the surface of HIV-1 (i.e., gp120) and T cells (i.e., CD4+ receptor, and CCR5 and CXCR4 co-receptors) involved in viral binding and entry. 4. Apply concepts of viral tropism and immune evasion mechanisms to complete the HIV-1 infection cycle in CD4+ T cells. Credits: Executive Producer and Consultant Brian Wigdahl, PhD Chair, Department of Microbiology and Immunology (M&I); and Executive Director, Institute for Molecular Medicine and Infectious Disease (IMMID), Drexel University College of Medicine Subject Matter Expert and Project Supervisor   Sandra Urdaneta-Hartmann, MD, PhD, MBA Assistant Professor of M&I; and Director, the Center for Business and Program Development at IMMID, Drexel University College of Medicine Game Designer Carla Louise Brown, PhD Postdoctoral Fellow, Department of M&I and IMMID, Drexel College of Medicine Programmer and Artist Vincent Mills Co-op student at M&I and IMMID, Game Art and Production Program, Drexel University College of Media Arts and Design (Class of 2018) Animator and Artist Andrew Dean Bishop Co-op student at M&I and IMMID, Animation and Visual Effects, Drexel University College of Media Arts and Design (Class of 2018) SPECIAL THANKS TO: Subject Matter Experts Fred Krebs, PhD; William Dampier, PhD; Michael Nonnemacher, PhD; Vanessa Pirrone, PhD; Michael Wagner, PhD; and Mary Ann Comunale. Beta Testers Microbiology and Immunology Department graduate students Drexel University Entrepreneurial Game Studio *** Please help us improve this game by reporting any bugs to IMMID@Drexelmed.edu. We welcome feedback and suggestions for upgrades and improvements. *** ©2017 Drexel University

  • This app has not received enough ratings or reviews to display an overview.

This app has been updated by Apple to display the Apple Watch app icon. Slowed down the speed of the tutorial.

The developer, Drexel University, has not provided details about its privacy practices and handling of data to Apple. For more information, see the developer’s privacy policy.

  • No Details Provided

    The developer will be required to provide privacy details when they submit their next app update.

    The developer has not yet indicated which accessibility features this app supports. Learn More

    • Provider
      • Drexel University
    • Size
      • 186.8 MB
    • Category
      • Education
    • Compatibility
      Requires iOS 7.0 or later.
      • iPhone
        Requires iOS 7.0 or later.
      • iPad
        Requires iPadOS 7.0 or later.
      • iPod touch
        Requires iOS 7.0 or later.
    • Languages
      • English
    • Age Rating
      13+
      • 13+
      • Infrequent
        Medical Treatment Information
    • Copyright
      • © (c) 2017 Drexel University